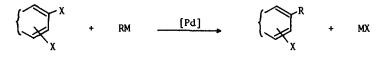
SELECTIVE MONO-ALKYLATION AND ARYLATION OF AROMATIC DIHALIDES BY PALLADIUM-CATALYZED CROSS-COUPLING WITH THE GRIGNARD AND ORGANOZINC REAGENTS


Akio Minato,^{1a} Kohei Tamao,^{1b} Tamio Hayashi,^{1b} Keizo Suzuki,^{1a} and Makoto Kumada*^{1b} Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, and Kyoto College of Pharmacy, Yamashina, Kyoto 607, Japan

Summary: Dibromobenzene, dibromothiophenes, dichloro- and dibromopyridine are highly selectively mono-alkylated and arylated with Grignard or organozinc reagents in the presence of palladium complexes as catalysts.

The transition metal-catalyzed cross-coupling of organometallic reagents with organic halides have provided a valuable and useful tool for the formation of the carbon-carbon σ bond.² Increasing attention has recently been directed to the functionalized-carbon homologation of organometallics. One of the most remarkable and useful reactions may be the selective mono-alkylation and arylation of α, ω -dibromoalkanes, which has been accomplished by the coppercatalyzed Grignard coupling reaction.³ There has been virtually no practically useful method for the selective mono-alkylation of aromatic polyhalides. The selective Grignard cross-coupling with $C(sp^2)$ -halides catalyzed by nickel⁴ or palladium⁵ complexes would be promising for the purpose. As we have previously mentioned,⁴ however, the nickel-catalyzed Grignard coupling reactions of dichlorobenzenes give rise to the formation of di-alkylated products predominantly even if an equimolar amount of Grignard reagent is used. Although mono-arylation of bromochlorobenzene^{5b} and fluoroiodobenzenes^{5b, 5c} has been achieved by the palladium-catalyzed Grignard coupling, such mixed dihalides are not readily available.

We now find that the palladium-catalyzed coupling reaction is also suitable for the monoalkylation and arylation of readily available aromatic dihalides containing the same halogen atoms such as dibromobenzenes, dibromothiophenes, dichloro- and dibromopyridine.⁶

845

X = C1, Br; M = MgX or ZnX

Thus, the reaction of one equivalent of an organometallic reagent (the Grignard or organozinc⁷ reagent) with a dihalide in the presence of a catalytic amount of a palladium complex gives a substituted monohalide in a satisfactory yield. Representative results are summarized in Table 1. Several characteristic features are as follows. (1) No special technique is necessary and mono-alkylated and arylated products are formed in the range of 52 - 76% yields. In most cases, disubstituted products are formed only in less than several per cent yield. (2) Reactions of 1,2-dibromobenzene with methyl and benzyl Grignard reagents which contain no β hydrogen were rather slow and about 20% yield of the desired products were obtained under the standard reaction conditions employed in this study. Mono-benzylation, however, could be achieved by using benzylzinc bromide.⁷ (3) For the mono-phenylation both of the phenyl Grignard and zinc^{7,8} reagents gave essentially the same satisfactory results. (4) The n-butyl Grignard reagent, bearing β -hydrogens, gave unsatisfactory results with Pd(PPh₃)₄ as a catalyst. The conversion and selectivity, however, could be dramatically improved by using a palladium catalyst containing a bidentate phosphine,⁹ 1,4-bis(diphenylphosphino)butane (dppb). The bidentate phosphine-palladium complex is more effective also for the mono-phenylation than unidentate phosphine complexes. (5) Heterocyclic dihalides also undergo the mono-arylation and -benzylation with fairly good selectivity. Comparable reactivity has been observed for 2,6-dichloroand dibromo-pyridine. While dibromothiophenes reacted smoothly, 10 no reaction was observed with 2,5-dichlorothiophene.

Based on the proposed catalytic cycle^{4,5e,11} for the cross-coupling reactions consisting of oxidative addition of an organic halide to a low valent metal species and reductive elimination of a coupling product from a diorganometal complex, the preferential formation of monoalkylated products from aromatic dihalides with palladium catalysts, not with nickel catalysts, may result from, at least, the following two factors: in comparison with a nickel(0) complex, (1) lower reactivity of palladium(0) species in the oxidative addition to aromatic monohalides, especially to alkylhalobenzenes,¹² and (2) weaker π -interacation of a palladium(0) species with an unsaturated compound.¹³ Therefore, the produced mono-alkylated monohaloaromatics may well be

Halide	RMgX or RZnX	Catalyst	Conditions ^b			Products, ^c yield (%) ^d		
			Solv.	Temp.	Time (h)	Моло	Di	Rec
Br	MeMgBr	Pd(PPh ₃) ₄	Et ₂ 0	reflux	20	24	0	78
Br	n-BuMgBr	Pd(PPh ₃) ₄	Et ₂ 0	reflux	20	15	0	67
	n-BuMgBr	PdC1 ₂ (dppb) ^e	Et ₂ 0	reflux	20	76	5	2
	PhCH ₂ MgC1	Pd(PPh ₃) ₄	Et ₂ 0	reflux	20	20	0	79
	PhCH ₂ ZnBr	Pd(PPh ₃) ₄	THF	50°C	16	68	12	9
	PhMgBr	Pd(PPh ₃) ₄	THF	50°C	20	61	2	23
	PhMgBr	PdC1 ₂ (dppb) ^e	Et ₂ 0	reflux	20	75	3	11
	Ph ZnC 1	Pd(PPh ₃) ₄	THF	50°C	20	60	4	22
Br	PhCH ₂ ZnBr	Pd(PPh ₃) ₄	THF	50°C	20	52	6	20
Me Br S Br	PhMgBr	Pd(PPh3)4	THF	50°C	20	72	f	f
	PhCH ₂ ZnBr	Pd(PPh ₃) ₄	THF	50°C	20	56	13	15
Br	PhCH ₂ ZnBr	Pd(PPh ₃)4	THF	50°C	20	60	15	13

Table 1. Coupling of Aromatic and Heterocyclic Dihalides with Grignard and Organozinc Reagents^a

^{*a*} Carried out on a 5 mmol scale. Dihalide/RMg(or Zn)X/catalyst $\approx 1/1/0.01$ (molar ratio). ^{*b*} Reaction conditions have not yet been optimized. ^{*c*} Mono: mono-alkylated or -arylated product; Di: dialkylated or arylated product; Rec: recovered dihalide. ^{*d*} Determined by GLC. ^{*e*} dppb = 1,4-bis(diphenylphosphino)butane. ^{*f*} Not determined.

replaced from the coordination site by another molecule of dihalide faster than further oxidative addition of the former to a catalytically active palladium species.

Acknowledgment. K.T., T.H., and M.K. thank the Grant-in-Aid for Scientific Research of the Ministry of Education (No. 411109) for support of the work.

REFERENCES AND NOTES

- 1. (a) Kyoto College of Pharmacy; (b) Kyoto University.
- For a pertinent review, see K. Tamao and M. Kumada, in "Organometallic Reactions and Syntheses", E. I. Becker and M. Tsutsui, Ed., Plenum, New York, in press.
- (a) L. Friedman and A. Shani, J. Am. Chem. Soc., 96, 7101 (1974); (b) J. F. Normant, A. Commercon, and J. Villieras, Tetrahedron Lett., 1465 (1975); (c) G. Schill and C. Merkel, Chem. Ber., 111, 1446 (1978).
- K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, I. Nakajima, A. Minato, and M. Kumada, Bull. Chem. Soc. Japan, 49, 1958 (1976), and references cited therein.
- 5. (a) M. Yamamura, I. Moritani, and S. Murahashi, J. Organometal. Chem., 91, C39 (1975); (b)
 A. Sekiya and N. Ishikawa, J. Organometal. Chem., 118, 349 (1976); (c) A. Sekiya and N.
 Ishikawa, J. Organometal. Chem., 125, 281 (1977); (d) H. P. Dang and G. Linstrumelle,
 Tetrahedron Lett., 191 (1978); (e) S. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita, and
 K. Kondo, J. Org. Chem., 44, 2408 (1979); (f) T. Hayashi, M. Konishi, and M. Kumada,
 Tetrahedron Lett., 1871 (1979).
- The selective mono-methylation (MeMgBr) of 2,6-dichloropyridine in the presence of certain σ-pyridyl-palladium complexes as catalysts has recently been found also by S. Kawaguchi and K. Isobe, Osaka City University (private communication).
- 7. E. Negishi, A. O. King, and N. Okukado, J. Org. Chem., 42, 1821 (1977).
- 8. Phenylzinc chloride was prepared by the reaction of the phenyl Grignard reagent with zinc chloride.
- Certain bidentate phosphine-palladium complexes have recently been shown by two of us to be the most effective catalyst for the cross-coupling of secondary alkyl Grignard reagents with organic halides.^{5f}
- 10. Part of the work on the palladium catalyzed mono-phenylation and benzylation of dibromothiophenes has been presented at the IXth International Conference on Organometallic Chemistry, September 3-7, 1979, Dijon; Abstracts, A19.
- 11. D. G. Morrell and J. K. Kochi, J. Am. Chem. Soc., 97, 7262 (1975).
- 12. (a) P. Fitton and E. A. Rick, J. Organometal. Chem., 28, 287 (1971); (b) M. Foá and L. Cassar, J. Chem. Soc. Dalton, 2572 (1975).
- 13. (a) C. A. Tolman, W. C. Seidel, and D. H. Gerlach, J. Am. Chem. Soc., 94, 2669 (1972);
 (b) T. Majima and H. Kurosawa, J. Organometal. Chem., 134, C45 (1977).

(Received in Japan 4 December 1979)